<tbody id="pdvwv"></tbody>
  • <button id="pdvwv"><acronym id="pdvwv"></acronym></button>
    <dd id="pdvwv"><pre id="pdvwv"></pre></dd>
    1. 
      

          <th id="pdvwv"><track id="pdvwv"></track></th>
          1. <th id="pdvwv"><pre id="pdvwv"></pre></th>
          2. <rp id="pdvwv"></rp>
            <dd id="pdvwv"><noscript id="pdvwv"></noscript></dd>
            <em id="pdvwv"></em>
            臭氧產品
            首頁 > 臭氧知識 > 臭氧問答 > 臭氧氧化芳香族化合物中生物毒性的演變規律研究
            2023-01-28????來源:http://www.mysticalroads.com/???瀏覽量:????
            臭氧氧化芳香族化合物中生物毒性的演變規律研究
            1 引言(Introduction)
            環境中芳香族化合物具有毒性大、可生化性差等特點,是難降解工業廢水中的主要污染物之一(Ryssel et al. , 2015). 臭氧工藝作為一種有效的水污染控制技術,在飲用水消毒中的應用歷史悠久,近年來,為去除污水中生物難降解的污染物,臭氧化作為預處理工藝或深度處理工藝在難降解工業廢水處理中的應用越來越廣泛. 然而臭氧化不能完全礦化有機物,新生成的中間產物的生物毒性和積累潛力往往要高于母體化合物(Li et al. , 2008; G佼mez-Ramoset al. , 2011; Kuang et al. , 2013; Najjar et al. ,2013). 此外,這些高毒性副產物可能比母體污染物更難去除,并在環境中成為新的污染物(Hoign佴et al. ,1983; Yao et al. , 1991; Shang et al. , 2001; Turhanet al. , 2007). 因此,有必要開展對臭氧化過程中生物毒性演變規律的研究,為臭氧化工藝更加安全、高效的應用提供理論指導和技術支持.
            以往對水處理中污染物去除的研究多集中在污染物的去除效率方面(陳行行等,2017;韓月等,2019;Yang et al. , 2020),對生物毒性的變化關注較少,尤其是對臭氧化中生物毒性的演變及高毒性中間產物的性質鮮有文獻報道. 受污染水體中污染物種類數以千萬計,傳統的僅針對某些目標污染物濃度的測定,對水質安全評價具有片面性. 生物毒性測試法彌補了傳統方法的不足,可有效檢測水體中所有共存污染物的綜合生物效應,能直觀評價水質的安全性. 發光菌在毒性測試中具有靈敏度高、操作簡單等優點,已廣泛應用于反應樣品的綜合毒性和急性毒性的檢測(馬梅等, 1998; Jennings et al. ,2001; Huang et al. , 2011).
            基于此,本文以苯酚、鄰甲酚、對甲酚、間甲酚、苯胺和對氯苯胺這6 種芳香族化合物為研究對象,從生態毒理學的角度評價臭氧化的效果,即在評價污染物自身去除和TOC 變化的同時,研究其急性生物毒性在臭氧化過程中的演變,揭示高毒性中間產物的性質及生成機制,以期為臭氧化工藝的安全運行提供支撐,從而提高水資源的安全性,降低水質風險.
            2 材料與方法(Materials and methods)
            2. 1 儀器與試劑
            主要儀器:高效液相色譜儀;臭氧發生器;臭氧濃度檢測儀;酶標分析儀;紫外分光光度計;TOC 分析儀;立式壓力蒸汽滅菌鍋;恒溫磁力攪拌器.6 種芳香族化合物標準品:苯酚(phenol,BP)、鄰甲酚(o-Cresol,o-C)、對甲酚(p-Cresol,p-C)、間甲酚(m-Cresol,m-C)、苯胺(aniline,AN) 和對氯苯胺( p-Chloroaniline, p-CAN ) 均購自德國AladdinChemistry 公司. 高效液相色譜級叔丁醇( tert-Butanol,t-BuOH)購自中國Meryer Chemical 公司;無水亞硫酸鈉購自中國南京寧試化學試劑有限公司;碘化鉀購自德國Aladdin Chemistry 公司.
            用于生物測試的KH2 PO4、Na2 HPO4·12H2 O、MgSO4、NaHCO3、CaCl2、KCl 等均為分析純,購自中國國藥滬試化學試劑有限公司.
            2. 2 臭氧化實驗
            在2. 5 L 的玻璃反應器中進行序批式臭氧化實驗,將反應器置于磁力攪拌器上,通過磁子進行攪拌. 純氧通過臭氧發生器產生臭氧氣體,由臭氧發生器后連接的臭氧濃度檢測儀對臭氧濃度進行檢測,待臭氧濃度指數在設定濃度下穩定后開始向反應器中進氣,以0. 5 L·min-1的流速通過反應器底部的多孔曝氣器均勻分散到溶液中,尾氣中的臭氧由尾端連接的KI 溶液吸收. 按一定時間間隔取水樣,取出后立即用氮氣吹脫溶解在溶液中未反應的臭氧,對水樣進行母體污染物濃度、TOC 和急性毒性測試,研究初始污染物濃度、臭氧劑量、pH 值和反應時間4 個工藝條件對臭氧化后急性毒性的影響. 初始污染物濃度為25 ~ 75 mg·L-1(p-CAN 為34. 2 ~102. 6 mg·L-1 ),臭氧劑量為14 ~42 mg·L-1. 在不同pH(3、5、7、10)下進行臭氧化反應,不同pH 的反應物溶液用10 mmol·L-1 磷酸緩沖液配制,再使用1 mol·L-1H2 SO4和1 mol·L-1 NaOH 調節至相應pH 值. 向溶液中加入55 mmol·L-1叔丁醇,以抑制羥基自由基與底物的反應. 向1. 2 mL 臭氧化水樣中加入37. 3mg·L-1亞硫酸鈉,用以去除氧化性物質,考察其對急性毒性的貢獻. 水樣于4℃保存,48 h 內分析完畢.
            2. 3 分析項目及檢測方法
            2. 3. 1 常規指標測定
             采用總有機碳分析儀測定水樣TOC. 采用配備紫外檢測器(SPD-M20A)的高效液相色譜分析儀(HPLC) 測定溶液中苯酚的濃度,配備的色譜柱為改性C18 柱(Inertsil ODS-SP,250 mm*4. 6 mm*5 μm). 進樣量為10 μL,柱溫為30℃,流動相A 為甲醇,流動相B 為超純水,A 與B的體積比為6. 5頤3. 5. 流速為1 mL·min-1,測試時間為10 min,苯酚檢測波長為271 nm,保留時間為4. 8min. 其他5 種芳香族化合物的濃度采用紫外分光光度法測定,采用雙光束Lambda-25 分光光度計在700 ~200 nm 范圍內掃描溶液紫外吸收光譜,利用特征波長進行定量,甲酚、苯胺和對氯苯胺的特征波長分別為271、280 和290 nm.
            2. 3. 2 發光菌急性毒性實驗 本實驗受試菌種為青?;【鶴67(Vibrio qinghaiensis sp. -Q67). 實驗方法參考已有研究(Ma et al. , 1999),具體方法如下:
            取在-80℃冰箱中保存的Q67 菌種(1 mL 菌液)接入裝有液體培養基的錐形瓶,于22℃、180 r·min-1條件下振蕩培養16 ~ 18 h;然后取100 μL 菌液于96 孔板測定發光強度(RLU),2000 r·min-1 下離心10 min,吸取菌體,用模擬湖水將菌體制成菌懸液,調整菌懸液的密度,使其發光強度在20*104 ~ 60*104 RLU·mL-1之間待用. 每次測試前,將測試水樣調整至pH 為6. 5 ~7. 5,并用模擬湖水稀釋至一系列濃度. 將180 μL 水樣及20 μL 調整后的菌液加入96 孔板中,模擬湖水設置為空白對照,水樣的每個濃度設置3 個平行. 振蕩15 min 后,用酶標儀測定各孔的發光強度.
            采用稀釋倍數的倒數表示樣品的相對濃度,根據式(1)計算發光抑制率IR.
            式中,RLIbc 為空白對照組的發光強度;RLIs 為稀釋水樣的發光強度.
            使用Origin(Originlab,2019b)擬合水樣的劑量-效應曲線,計算最大半抑制濃度,具體如式(2)
            所示.
            式中,x 為原水樣在稀釋水樣中的百分比;y 為呈現S 形形狀的發光抑制率;IRmax 和IRmin 分別為發光抑制率的最大值和最小值;S 為斜率參數;EC50 為最大半抑制濃度.
            為了全面分析水樣的毒性,本文引入美國聯邦環境保護局(USEPA)提出的毒性當量,用毒性單位(TU) 表示急性毒性( Shang et al. , 2002; Hanet al. , 2019),計算方法見式(3).
            3 結論(Conclusions)
            1)初始污染物濃度、臭氧劑量、pH 和反應時間等工藝條件會影響苯酚、鄰甲酚、對甲酚、間甲酚、苯胺和對氯苯胺這6 種芳香族化合物臭氧化時生物毒性的變化. 初始污染物濃度增大,臭氧化芳香族化合物的生物毒性最大值增大. 隨著臭氧劑量增大,臭氧化苯酚、間甲酚和對氯苯胺的生物毒性最大值下降,臭氧化鄰甲酚和苯胺的生物毒性最大值升高,臭氧化對甲酚的生物毒性最大值變化較小.隨著pH 從3 升高到7,臭氧化4 種酚類化合物時生物毒性最大值呈下降趨勢;pH 對臭氧化苯胺和對氯苯胺生物毒性最大值的影響較小.
            2)臭氧分子是臭氧化芳香族化合物時高毒性中間產物生成的主要氧化劑.
            3)氧化性高毒性中間產物是臭氧化過程中急性毒性升高的主要貢獻物,這一性質的揭示有利于指導開發針對性的生物毒性控制方法,以達到臭氧工藝的安全運行.

            標簽:臭氧氧化(12)研究(2)芳香族化合物(1)生物毒性(1)演變(1)規律(1)


            相關文章:

          3. 臭氧氧化能使H2S轉化為SO2嗎2023-04-11
          4. pH值影響催化臭氧氧化效果的回答2022-07-12
          5. 臭氧氧化效率是怎么計算的2022-05-06
          6. 高級氧化技術的作用機理及發展2019-11-26
          7. 山西大學文獻:晝夜節律紊亂與臭氧誘導的小鼠肝臟葡萄糖代謝紊亂有關2023-10-26
          8. Aeroqual S500系列檢測儀故障問題排除2023-10-20
          9. 臭氧濃度中μmol/mol,PPM的定義與關系2023-10-18
          10. 臭氧濃度在空氣和水中單位轉換2023-10-10
          11. 膜接觸臭氧-UV實驗裝置流程與方法2023-09-18
          12. EcoSensors OG-3臭氧源介紹與使用2023-09-06
          13. DPD方法測量水中臭氧濃度的儀器有哪些2023-08-29
          14. 臭氧發生器性能有哪些因素影響呢?2023-08-23
          15. 臭氧發生器氮氧化物含量是多少正常2023-08-16
          16. 臭氧消毒CT值,它是什么?2023-07-31
          17. 臭氧的氧化還原電位是多少2023-07-27
          18. 美國2B 108-L臭氧檢測儀如何進行校準2023-07-21
          19. 【ESE研究論文】基于熒光光譜和機器學習的臭氧催化劑定制化制備方法2023-07-21
          20. Eco Sensors DO3便攜式溶解臭氧測試儀如何使用2023-07-13
          21. 鼓泡塔臭氧催化氧化一體化教學裝置介紹2023-07-07
          22. ×
            • 免費電話咨詢

            010-82461830
            一本一道久久综合网_中文久久精品无码色_国产97人人模人人爽人人喊_91亚洲色
            <tbody id="pdvwv"></tbody>
          23. <button id="pdvwv"><acronym id="pdvwv"></acronym></button>
            <dd id="pdvwv"><pre id="pdvwv"></pre></dd>
            1. 
              

                  <th id="pdvwv"><track id="pdvwv"></track></th>
                  1. <th id="pdvwv"><pre id="pdvwv"></pre></th>
                  2. <rp id="pdvwv"></rp>
                    <dd id="pdvwv"><noscript id="pdvwv"></noscript></dd>
                    <em id="pdvwv"></em>